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Introduction

1. Introduction

Recent work in Image Understanding [Ballard and Brown 1982, Brady 1982, MFrr 1982]
has centered on the development of modules that compute three-dimensional depth, or
depth gradients. Such modules include: stereo [Grimson 1981, 1984, Mayhew 1983];
shape from shading [Ikeuchi and Horn 1981, 1984] and photometric stereo [Woodham
1980, 1981]; shape from contour [Brady and Yuille 1984a, Witkin 1981, Barnai'd 1983,
Barnard and Pentland 1983]; shape from motion [Bruss and Horn 1983, Ullman 1978]; and
shape from texture [Vilnrotter, Nevatia, and Price 1981]. In applying vision to iobotics,
range finding and structured light have been investigated as techniques for re:overing
depth directly [Agin 1972, Holland, Rossol, and Ward 1979, Bolles, Horaud, and Hannah
1984, Faugeras et. al. 1982, 1984, Porter and Mundy 1982, 1984, Tsuji and Asada
1984] Although the work referred to above is largely experimental, it is clear thai robust,
efficient, practical three-dimensional vision systems wiJl soon be available.

Severa] authors have suggested that the output of these "shape from" processes is a
""" representation(s) that makes explicit the surface depth z(x, y) or the local surface normal
,. n(z, y). Barrow and Tenenbaum [1978] call such a representation an "intrinsic image",

which emphasises that the representation has the same format as an image. Just as
applicatio-is of two-dimensional vision depend upon the development of rich representa-

. tions of shape (for example, Brady and Asada [1984]), computed from an image, so will
applications of three-dimensional vision. This paper is concerned with the geometrical

. -. bsis of such a representation. In particular, a set of curves axe isolated that lie upon
the surface and enjoy a global property, for example being planar. The structure of the
representation is currently under development.

The representation that we are developing is based on the concepts of differential
geometry, principally because it provides a hierarchy of increasingly stringent surface
descriptions. A surface may simply be doubly curved, but it may be ruled, even devel-
opable, even conical. Our aim is to find the most stringent descriptors for portions of a

. surface. If, for example, there is a region of umbilic points, that indicates that part of the
surface is spherical, then it is made explicit, as is the center of the corresponding sphere
(Figure 1). If there is a portion of the surface that is part of a surface of revolution, it is
described as such, and the axis is determined (see Figures I and 19).

Similarly, if there is a line of curvature or an asymptote that is planar or whose
associated curvature (principal curvature or geodesic curvature respectively) is constant,
then it is made explicit. For example, the asymptote that marks the smooth join of
the bulb and the stem of the lightbulb in Figure 1, as well as the surface inteisections
marked on the oil bottle in Figure 21, are noted in the representation. We may associate
a description with a curve that is a surface intersection; but only if it has an important
property such as being planar. For example, a slice of a cylinder taken oblique to the
axis of the cylinder produces a planar curve of intersection. On the other himd, the
intersection of two cylinders is not a planar curve.

Figure 1 illustrates the representation we are aiming at. The stem of the lightbulb is
determined to be cylindrical, because it is ruled and because it is a surface of revolution.
We can compute the axis of the stem. The bulb is determined to be a portion of a
sphere, because it is a connected region of umbilic points. The center of the sphere



2 Describing surfaces

can be computed. Similarly, the center of the sphere that forms the threaded end can be
determined. The stem is smoothly joined to the bulb. Moreover, the axis of the cylindrical
stem passes through the centers of the spheres defined by the bulb and threaded end.
This distinguishes the diameters of each that are collinear with the stem axis, showing

,4 that the lightbulb is a surface of revolution. The geometrical primitives can be computed
by the algorithms described below. We axe working on the inference engine.

region umbilic portion. o has

'" - :::::: :: :::::::::::::::::::::::::::::::::: :::::::::::_:_ _: parabol_____________
, i ............. ...... ......... . onmot l p a a

-. ~ ~ ~ ~ ~ I .. .... ......... ..... ..... . : ....... _=ln- I I
re....io... cylinder . !

tz ~l ruled developabl"e0

s y parabolic planar

joins line.

regdon -umbilicpotoorhscne

Figure 1. The representation of a lightbulb. a. The dotted region consists of umbilic points, indicating
that the bulb is spherical. The parallel lines are the meridians of the cylindrical stem. The parallels, which
are also rulings, are not shown. Thc significant surface changes are shown. They indicate the smooth join
between the bulb and the stem and between the stem and the threaded end. b. The representation that
we are working towards for the lightbulb.

In the next two sections we report recent theoretical developments and computational
experiments. The theoretical component of our work is a study of classes of surface curves
as a source of constraint on the surface on which they lie, and as a basis for describing it.
We analyze bounding contours, surface intersections, lines of curvature, and asymptotes.
Our experimental work investigates whether the information suggested by our theoretical
study can be computed reliably and efficiently. We demonstrate algorithms that compute
lines of curvature of a (Gaussian smoothed) surface; determine planar patches and umbilic
regions; extract axes of surfaces of revolution and tube surfaces. We report preliminary
results on adapting the curvature primal sketch algorithms of Asada and Brady [1984] to
detect and describe surface intersections. The experimental results appear to contradict
statements by a number of authors to the effect that second differential quantities such .

as lines of curvature cannot be computed reliably.

N, 2. Surface curves'
4.
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Surface curves 3

2.1. Introduction

A surprising amount can be learned about a surface from certain curves that lie upon
it. Our theoretical work is an investigation of classes of surface curves as a -;ource of
constraint on the geometry of the surface and as a basis for description of the surface.
The curves that we have studied are: bounding contours [Koenderinck and van Doorn
1982, Koenderinck 1984, Marr 1977, Barrow and Tenenbaum 1978, 1981, Binford 1982];
lines of curvature [Stevens 1982, 1983, Brady and Yuille 1984b]; asymptotes [B:ady and
Yuille 1984b]; and surface intersections [Binford 1982].

We begin by discussing (extremal) bounding contours of a surface, where the surface
normal turns smoothly away from the viewer. First, we recall that the surface normal
can be determined from its (orthographic) projection. Then we present a new proof of
a recent c'esult due to Koenderinck [19841 which states that the sign of the Gaussian
curvature of the su.face at points along the boundary curve is the same as the sign of
the curvature of the projection of the boundary curve. We extend the result .nd show
that, in general, points on the projection of an extremal boundary where the curvature
is zero typically correspond to points on the surface that are locally flat (that is, where
both principal curvatures are zero), or the boundary is locally aligned with a surface
line of curvature whose curvature is zero. We suggest that these results may provide an
alternative to line labelling for interpreting line drawings of curved objects.

The bounding contours of a surface are either extremal or mark discontinuities of some
.oder C,. Depth discontinuities of type Co typically occur at occluding boundaries. Most
surface intersections are of type C1 . Smooth joins are C2 discontinuities that can only
be perceived if the curvature in a direction orthogonal to the join changes substantially.
Asada and Brady [1984] discuss the analogous situation for planar curves. A Theorem
of Joacbimsthal [Weatherburn 1927, page 68] implies that surfaces rarely intersect along
their lines of curvature. For example, the intersection of the two cylinders in Figure 2 is
not a line of curvature of either surface.

The problem of detecting, localizing, and describing the discontinuities of a surface is
analogous to computing the Primal Sketch representation for images [Marr 1976, Haralick
et. al. 1983] and the Curvature Primal Sketch representation of the significant dhanges
of curvature along planar curves [Asada and Brady 1984]. In Section 2.3, we show
that Joachimsthal's Theorem can, under certain circumstances, be undone by Gaussian
smoothing. More precisely, we shall prove that although two surfaces rarely intersect
along a line of curvature, the intersection generates a line of curvature of the surface that
results from smoothing with a Gaussian distribution:
Theorem Let f(z, y, z) be a surface that is the cross product of a planar curve and a
straight line. The lines of curvature of the convolution of f with a Gaussian distribution
are in the plane of the curve and parallel to the generating line.

The restriction that the straight line be orthogonal to the planar curve is severe
and implies that the surface is cylindrical. We are investigating ways to w.aken the
assumption as part of our development of the Surface Primal Sketch.

it Se:tions 2.4 and 2.5 -we turn our attention to curves that lie in the interior of
the visible portion of the surface, though they may intersect its boundaries. At each
point of the surface, we define a set of intrinsic directions Oi(z,y) in which th~e surface
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Figure 2. The curve that is the intersection of the two cylinders is not a line of curvature of either cylinder

change locally appears to be intrinsically important, and we associate a descriptor bi(z, y)
with each such direction. The set of intrinsic directions that we have investigated so far
consists of the directions of principal curvature, the asymptotic directions (directions in
which the normal curvature is zero), and the parabolic directions, across which the sign of
the Gaussian curvature changes. The corresponding descriptors bi (x, y/) are the principal P.

curvatures, and, for the asymptotes, the geodesic curvature. Currently, no descriptor is
associated with parabolic directions. We may find it necessary to investigate additional
intrinsically important directions in due course, though the directions of principal curva-
ture, and asymptotic and parabolic directions suffice for a broad class of analytic surfaces
that includes surfaces of revolution, ruled and developable surfaces, and generalized cones.

The directions and descriptors are local statements about the surface. For example,
the directions of principal curvature give the locally flattest coordinate system intrinsic
to the surface. We aim to describe the larger scale structure of the surface. Whereas local
surface structure is thoroughly discussed in differential geometry, larger scale structure is
not. To determine the larger scale structure of the surface, we link the local directions to
form smooth curves. These curves are the lines of curvature, asymptotes, and parabolic
lines of the surface, and they are discussed in Sections 2.4 and 2.5. We propose that
these smooth curves are only made explicit when they satisfy additional constraints.

Currently, these constraints are that either (i) the descriptors 6b in the directions 0i
are (nearly) constant along the curve, or (ii) the curve is (nearly) planar. The need
for constraints on the surface curves is illustrated in Figure 3, which shows the lines of
curvature on an ellipsoid. Only three of the lines of curvature are planar, and they are
the intersections of the symmetry planes of the ellipsoid with the surface. The surface is

effectively described by these curves. We show how choosing a set of surface curves in
this manner can automatically suggest a "natural parameterization" of a surface. -.

A surface curve is a geodesic if and only if its geodesic curvature is zero. Geodesics v

ILI
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Surface curves 5

.. form a mathematically important class of curves. However, as we discuss below, there
axe situations in which, perversely, there are too many geodesics or too few. For the
moment, we note that requiring planarity is less severe than requiring that the curve be
a geodesic. A geodesic is planar if and only if it is a line of curvature. It follows that
if the geodesic curvature is zero along a line of curvature then it is planar. However,
planar lines of curvature are not necessarily geodesics, hence do not have zero geodesic
curvature.I

Figure 3. The lines of curvature of an ellipsoid. The only lines of curvature that are planar are the
in tersections of the surface with its planes of symmetry. Other lines of curvature do not seem to convey
important information about the shape of the surface.

Section 2.4 is mostly given over to proving a theorem about generalized cones, a
theorem that relates surface curves to a volunictric representation proposed by Mary
[1977]. Marr considered generalized cones [Brooks 1981, Brooks and Binford 1980] with
straight axes. Ie suggested that such a generalized cone is effectively represented by (i)

7 those cross sections, called skeletons, for which the expansion function attains an extreme
value; and (ii) the tracings, called flutings, for which the cross-section function attains an
extremum. (A tracing is the space curve formed by a point of the cross section contour
as the cross section is drawn along the axis.) Figure 4 illustrates these terms. We prove
the following Theorem:

Theorem If the axis of a generalized cone is planar, and the eccentricity of the cone
is zero, then (i) a cross section is a line of curvature if and only if the cross section is a
skeleton; and (ii) a tracing is a line of curvature if the generalized cone is a tube surface
(the expansion function is a constant), or the tracing is a fluting.

L --'.The cone's eccentricity at a point is the angle between the tangent to the axis curve

and the normal to the cross-section through that point. It follows that the flutings and
* skeletons of a (planar axis) generalized cone are implied by both consideration of surface

..% .o!m° . % -% . J o - . . . . . .
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* Figure 4. A generalized cylinder is formed by drawing a uniformly-expanding planar cross-section along a
space curve.

curves and by Marr's considerations of volumetric representations. Lines of curvature
that satisfy a large scale constraint, such as being planar, provide a uatural basis for
describing a surface. As is illustrated by the ellipsoid shown in Figure 2, and generalized
cones more generally, there may only be a small number of lines of curvature that satisfy

. the large scale constraints. Coupled to a suitable scheme for surface interpolation (for
example, Terzopoulos [1984]), they may provide a natural parameterization of the surface.
Brady and Yuille [1984b] call such a parameterization a curvature patch representation.

As we shall show in Section 2.5, however, lines of curvature are a poor basis for
describing many surfaces. In particular, ruled surfaces are seldom usefully described in
terms of their lines of curvature, which typically fail to satisfy the large scale constraints.
In such cases, the rulings are a better basis for description. The rulings of a developable
surface are asymptotes, which are curves along which the normal curvature is zero. They
are a useful basis for describing ruled surfaces. They are discussed in Section 2.4.

Section 3 reports some initial experiments on developing a Surface Primal Sketch
representation of significant surface changes. Significant surface changes are found as
follows. First, the surface is filtered with a Gaussian distribution and its lines of curvature
are found. These are projected into a plane and input to Asada and Brady's Curvature
Primal Sketch program. This isolates the significant curvature changes along the lines of
curvature and describes each such change symbolically.

The final class of curves that we investigate are the parabolic curves. These are the
smooth loci of parabolic points [Hilbert and Cohn Vossen 1952, pages 197 - 202]. Koen-
derinck's Theorem (re-proved in Section 2.2) suggests that parabolic points on extremal
contours can be found. Figure 5 is reproduced from Hilbert and Cohn-Vossen [1952, page
197). It shows the parabolic lines on the bust of the Apollo Belvidere. The footnote on
page 198 of Hilbert and Cohn-Vossen has a familiar ring: "F. Klein used the parabolic
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.curves for a peculiar investigation. To test his hypothesis that the artistic beauty of the
face was based on certain mathematical relations, he had all the parabolic curves marked
out on the Apollo Belvidere, a statue renowned for the high degree of classical beauty
portrayed in its features. But the curves did not possess a particularly simple form, nor
did they follow any general law that could be discerned".

Figure 5. Bust of the Apollo Belvidere with superimposed parabolic lines. (Reproduced from [Hilbert and
Cohn-Vossen 1952, page 197])

Consider, however, Figure 6a, which shows the computed regions of positive (white)
and negative (black) Gaussian curvature on the surface of a lightbulb. The parabolic
curves are planar and they mark smooth joins between significant parts, such as the bulb
and stem. This suggests that, just like directions of curvature, a parabolic curve needs to
satisfy additional large scale constraints in order to be made explicit by the visual system.
The cross product (Figure 6b) of a straight line and a planar curve that is the smooth
join of two curves whose (planar) curvatures have opposite signs (a smooth join in the
terminology of Asada and Brady [1984]) is a simple surface that has a planar parabolic
line. Asada and Brady point out that a smooth join is only perceivable if the difference
between the curvatures of the flanking curves is sufficiently different. Few of the parabolic
curves on the Apollo Belvidere have extended planar components. Those that do, such
as the line on the forehead, are crossed by curves that do not have perceivable smooth
joins. Two exceptions are the smooth join between the mouth and chin, and the smooth
join between the nostril and the rest of the nose.

In general, it does not appear that the Gaussian curvature is a useful descriptor for
a surface. The reason seems to be connected with the fact that the Gaussian curvature
is a divergence expression [Courant and Hilbert 1953, p. 196]. This means that its
Euler-Lagrange equation vanishes. A divergence term can be added to any variational
problem, for uxample surface interpolation [Grimson 1981, Terzopoulos 1984, Brady and

n. .-q j , .. .". ' .*.- . . ... .. .o. ................-. •.........-....,...........................................-...-."



8 Describing surfaces

Horn 1983], without changing the resulting surface. Representations based on Gaussian
curvature typically suppress spatial structure.

a b

Figure 6. a. The parabolic curves on a lightbulb are the transitions from elliptic regions (white) to
hyperbolic regions (black). b. The crosq product of a planar curve with a smooth join and a straight

line.

We omit analysis of certain classes of surface curve, particularly geodesics. There are
at once too many geodesics, yet, in many cases, too few. There are too many since there
is a geodesic through every point on a surface in every direction. The geodesics on a
cylinder, for example, are all the helices (R cos 0, R sin 0, kG), where R is the radius of
the cylinder. On the other hand, only those meridians of a surface of revolution that
are extrema of the surface width (skeletons, if it is thought of as a generalized cone) are
geodesics. We have, moreover, proposed that to be made explicit, a surface curve must
satisfy certain strong constraints. In particular, we would require a geodesic to be planar.
However, if a geodesic is planar then it is a line of curvature [Weatherburn 1927, page
1031.

2.2. Bounding Contours

Barrow and Tenenbaum [1981] propose that there are two distinct types of contour that
bound a surface, which they call extremal and discontinuity. At an extremal boundary,
the surface normal turns away smoothly from the viewer. A discontinuity boundary
marks the abrupt termination of a smooth surface, perhaps to intersect another surface
(see Barrow and Tenenbaum [1981, Figure 3.1]). Since a discontinuity boundary could

be produced by the edge of a ribbon that is oriented in an arbitrary direction, it is
difficult to infer a great deal about the flanking smooth surface solely from the image of
a discontinuity boundary. Brady and Yuille [1984a], Barnard and Pentland [1983], and
Barrow and Tenenbaum [1981] offer some suggestions.



Surface curves

Extremal boundaries are a rich source of information. First, suppose that a surface
f(z) y, z) = 0 is orthographically projected onto a plane whose normal is k. Suppose that
the surface has an extremal boundary, then its boundary rim curve contains k and lies
in the tangent plane of the surface. That is, k. Vf = 0, which can be written k • n = 0,
where n is the local surface normal.

Let the boundary curve r(s) lying on the surface have tangent vector T(s) = dr/ds.
Now n is orthogonal to both k and T, from which it follows that n is parallel to k x T.
The image of the boundary curve is

rp(sp) = k x (r x k),

whose tangent is

drp
d, (1).

= k x (T x k) d p

That is, the image of the tangent to the boundary curve is parallel to the tangent to
the image of the boundary curve. In fact, it is easy to see that

da = {1 - (T. k)2}- (2).

Since the unit surface normal n is parallel to k X T, it follows from Eqs. (1) and (2)
that it is parallel to k x Tp and so the surface normal at an extrenial boundary can be
determined from the image if the (orthographic) viewing direction is known. This result
is due to Barrow and Tenenbaum [1978].

An arbitrary curve parameterized by arclength R and lying on the surface satisfies
(see, for example, [Millman and Parker 1977, page 103]):

c(s)N(s) = K,(s)n(s) + ×c9(e)f x T(.), (3)

where T and N axe the unit tangent and unit normal to the curve (in the moving trihedron
of the curve); K is the curvature IdT/dsl of the curve; rc is the normal curvature of the
curve, defined as the curvature of the curve that is the intersection of the surface and the
plane that contains n and T; and Kg is called the geodesic curvature (Figure 7).

From now on, we restrict attention to the extremal boundary curve. Since k • n = 0,
Eq. 3 implies

xN " k = cg [k, n, T],

where [... indicates the triple scalar product. Since k - n = 0 (and n. T = 0), the triple
scalar product is zero if and only if k coincides with T. Similarly, k • N is zero if and
only if k lies in the rectifying plane spanned by the tangent T and the binormal B. It
follows from general position arguments that if k has a component out of the rectifying
plane then:

. 0 if and only ifK g = 0. (4)

85
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Figure 16. a. Planar patches on the Renault part found by simply requiring the absolute values of both

principal curvatures to be below a threshold. b. The planar patches on the same part found by the INRIA

group. (Reproduced from [Faugeras et. al. 1984, page 432])

19 76 , page 147 proposition 4]) that if all the points of a connected surface are umbilic,

then the surface is either contained in a sphere or in a plane. Since the curvatures are
non-zcro, the connected region that is the bulb of the lightbulb is a portion of a sphere.

In order to extract the lines of curvature, the directions at the individual surface

points need to be linked. This is more difficult than linking zero crossings to form an
edge for example since the principal directions form a dense set. Figure 17 shows that

lines of curvature cannot be extracted by simply choosing the eight-connected neighbor

with the nearest direction after projection onto z = 0. 0
Instead, linking is based on the vectors tmax(X,y) in the surface tangent plane. Ini-

tially, each point (z,y) can potentially link to its eight-connected neighbors. As the

program proceeds, neighbors become inhibited as they are linked to other points. The

program conducts a breadth-first search. At each iteration, the point (x,y) for which a
closeness evaluation function is minimized is chosen. If its minimizing neighbor is part of
a growing line of curvature, (z, y) extends it, otherwise a new line of curvature is started.

In either case, neighbors that are not minimizing inhibit their link to (x, y). The close-
ness function that is currently used is the sum of three dot products involving principal

vectors at neighboring points in the surface tangent plane:

+ t(xi,y i) r(zl,yx,z2,y2)1

+ t(X2, y2)" r(xl, yl,X2,Y2)

where r(xi, y1, z2, Y2) r(xi,yl) - r(X2 ,y 2 ). Other evaluation functions could have used

the curvature values as well a their directions, but we have not found this to be necessary.

Figure 18 shows the lines of curvature found by the algorithm for a coffee cui and an

%. *

,, " - ,
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Figure 15. The orthographic projections of the principal directions of curvature for an ellipsoid.

By Euler's theorem, the surface tangent vectors tmaz and train in the principal direc-
tions a xe orthogonal. Of course, their (orthographic) projections onto the plane z = 0
are not orthogonal, as Figure 15 shows.

The surface curvatures in the principal directions are the roots of the quadratic [Faux ""
and Pratt 1979, page 112]:

Jt - (gild 22 +- g22d11 - 2g12d12)ic + IDI = 0. (17)

The curvature values can be used to extract planar patches of a surface and regions
that consist entirely of umbilic points. To find planar patches, for example, we have
adopted the simple approach of requiring the absolute values of both principal curva-
tures to be below a small threshold. Figure 16a shows the planar patches found by this
technique for a Renault part used in experiments by Faugeras and his colleagues at IN-
RIA. Faugeras et. al. [1982, 1984] have investigated a variety of techniques that exploit
special properties of planes. Figure 16b shows the planes computed by the INRIA group
for the Renault part. It is the opinion of Jean Ponce, who has worked both at INRIA
and at MIT, that the two nmethods are equally effective.

A point is umbilic if its principal curvatures are equal. The principal curvatures
define a best fitting ellipsoid in the local neighborhood of a surface point. In the case
of an umbilic point, the ellipsoid is a sphere. To determine umbilic points, we simply
require that

Iici1- 11c21

is less than a threshold, where ,c and ic2 are the solutions to Eq. 17. Figure 1 shows a :'
region of umbilic points found for the lightbulb. It is well-known (for exam~ple, do Carmo""
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Figure 14. Operators used to estimate first and second derivatives of the Gaussian smoothed surface.
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where p is the z component of z. and q is the z component of zy. Similarly, the second

fundamental form is:

D=(n'zzz n.zzi)
n • z, n •zyl/

(dil d 12

d12  d22

where n is the unit surface normal. The (tangent) principal directions are the solutions

of the quadratic equation [Faux and Pratt 19791:

(d12922 - d22+12)( d 1n) = 0.

Suppose that A = dyl/dz is a tangent principal direction. Then the unit vector lying

in the surface tangent plane. in the principal direction is parallel to

t-= [,,,p + q].
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We appeal to the central-limit theorem and implement Gaussian filtering using re-
peated averaging with the 3 x 3 mask shown in Figure 13a (see Burt [1981, 1983]). -:
Iterating n times approximately corresponds to filtering with a Gaussian whose standard
deviation is proportional to vf. To prevent smoothing across previously marked depth
discontinuities, we use the technique of computational molecules proposed by Terzopoulos
[1983] in his application of finite-element techniques to surface reconstruction. In more
detail, the mask shown in Figure 13a is viewed as the sum of the four molecules shown
in Figure 13b. To apply the filter to a surface point, only those molecules that do not
overlap the set of points marked as discontinuities are used. Figure 12c shows the result
of Gaussian smoothing using repeated averaging and computational molecules.

a

b

2 4Z Z"

0

Figure 13. Ganssian smoothing. a. The 3 x 3 mask that is repeatedly applied to approximate Gaussian
filtering. b. The computational molecules whose sum is the mask shown in a.

3.2. Lines of Curvature

Suppose that the (Gaussian smoothed) surface is given in vector form as z(z, y). Its first
and second derivatives can be estimated using the facet model [Haralick 1980]. We derived
the finite difference operators shown in Figure 14 by least squares fitting a quadratic to
a 3 x 3 facet of the surface. Although these operators are sensitive to noise in raw image
or surface data, they perform well after Gaussian smoothing.

From these estimates we can compute the fundamental forms of the surface [Millman
and Parker 1977, Faux and Pratt 1979]. The first fundamental form is:

,.. .-. ..-. .--- -..-
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* .-.>. Witkin [1983] has proposed scale-space filtering in which a (one-dimensional) signal is

filtered at a variety of spatial scales to produce a hierarchical description. Witkin suggests
that it is possible to automatically determine a discrete set of "natural scales" at which
to describe a signal symbolically. Witkin's scale space representation is a ternary tree of
zero crossings of G". He did not attempt to interpret the multiple descriptions in terms
of primitive events. Asada and Brady [1984] have shown how scale space filtering can
be used to generate a symbolic description of the significant curvature changes along a
planar contour.

Yuille and Poggio [1983a] have provided some theoretical underpinning for the scale
space representation. They have shown that the contour of zero crossings of second
derivative,3 ("fingerprint") may preserve enough information to reconstruct the original
signal to within a constant scale factor. They also show [Yuille and Poggio 1983b] that
a Gaussian filter is essentially unique in having the property that zero crossings are not
introduced as one moves to coarser scales.

In view of this background with images, the first processing stage of our program
is Gaussian smoothing. Initially, we applied the Gaussian filter at every surface point
z(z, y). This is unsatisfactory as it smooths across the depth discontinuities that are the
bounding contours of an object (Figure 12b). This is an advantage in edge detection; but
a disadvaiitage in smoothing within a given region. In our experimental data, the depth
discontinuities are sharp and easy to find before smoothing. It is difficult to prevent
smoothing across discontinuities with a straightforward implementation of Gaussians us-
ing convolution masks. It is particularly difficult when the distance between opposite
sides of a surface is roughly the same size as the footprint of the convolution mask as it
typically is in our data.

IotMIO-ARAY. at y.30

b

ARM-2 at Y3

Figure 12. a. Raw data from a cross section of an oil bottle after scanning using the INRIA system.
b. Smoothing across surface boundaries with a Gaussian mask that is applied everywhere. c. Gaussian
smoothing using repeated averaging and computational molecules.

• .'.: "... - .: - . -.............. ,. - .. . .. . .... .. .. . .. . . ... ... . . . ..
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possible for a ruled surface to admit a significantly different description. For example,
the hyperboloid z2 + Y2 _ z 2 = 1 is both a ruled surface and a surface of revolution.

In general, a ruled surface can be parameterized in the form

r (, t) = u(s) + tw (),

where u is a curve called the directrix, and w(s) is the set of rulings. The theory of ruled
surfaces emphasizes a unique curve, called the line of striction, that lies in the surface
and is orthogonal to the w'. It is not clear what role, if any, it plays in perception.

The normal to a ruled surface is parallel to

U XW+tW' XW,

and varies with t along the ruling. The normal direction is constant along a ruling if and
only if n . u' is constant, which is if and only if the t:iple scalar product [u',w',w] is
zero. Along such rulings, the determinant of the second fundamental form D is zero, and
this in turn implies that the Gaussian curvature r, is zero. If this condition holds for all
rulings on a ruled surface, the surface is called developable and the Gaussian curvature
is everywhere zero. Informally, a surface is developable if it can be rolled out flat onto
a plane. For such surfaces the rulings are both asymptotes and lines of curvature. For
developable surfaces, the descriptive bases of Sections 2.4 and 2.5 coincide.

This section has advanced a number of mathematical methods for isolating curves
that embody important information about a surface. Now we turn to their computation.

3. Computational Experiments

In this Section we report on a number of computational experiments that investigate
whether the surface curves and regions proposed by our theoretical analysis can be com-
puted reliably and efficiently. The input to our programs are mostly (dense) depth maps
obtained by the structured light systems at MIT [Brou 1984] and INRIA [Faugeras et.
al. 1983]. Both systems are accurate to about 0.5 millimeters. The objects that we have
worked with include: a bottle, an egg, a sphere, a styrofoam cup, a lightbulb, and a pen
(all surfaces of revolution); a telephone handset (surface intersections and an approxi-
mately ruled surface); a coffee mug with a handle, a plastic container, a hammer, and a
Renault part [Faugeras et. al. 1983] (complex surfaces with surface intersections). We
have also conducted experiments with artificial data to which controlled amounts of noise
have been added.

3.1. Gaussian Smoothing

Depth maps generated by structured light systems are noisy, as are image surfaces. In
recent years, Gaussian smoothing filters have been extensively investigated for early pro-
cessing of images. For example, Marr and Hildreth [1980] suggest Laplacian of a Gaussian
filters V2GC for edge finding. These filters are closely approximated by difference-of--
Gaussian (DOG) filters that can be efficiently implemented. Poggio and TQrre [1984]
and Canny [1983] have suggested directional edge finders whose first step is Gaussian -: .:

smoothing.

"• ." ", _ " ," - -. " - "- ."*. . -.. "'.. . . .. .--. . . ....-' . .. " •. .- """ -'''2' .- '. '' -.-.- '-." -'-.. . .''..."*..... '- -''. '-.
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' Z' sp i ra I s
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Figure 11. The helicoid of a single blade. (Reproduced from [do Carmo 1976, Figure 2-27 Page 94])

where m and 1 are assumed positive. Denoting v/iV by d, and r/1 by tan i, we find

rl = [cos 0, sin ,O]T

re = 1-lsinO, IcsOI] T

n = [sin 0 sin ,-coS 0 sin 1,, cos 0]T

G=(' 0)

D=( -)-7 0

The principal directions of curvature are given by i = ±dO, and the principal cur-
vatures are ±m/d2 . Since the parameter I varies in the principal directions, so does m,
hence so does the principal curvature. It is easy to show that the lines of curvature are
not planar.

Notice that the diagonal of D is zero. It follows that the normal curvature in the
directions of the tangent vectors ri, re is zero. These are the asymptotes, and they
correspond to the rulings and spirals that make up the helicoid. The geodesic curvature
along the spirals is simply the curvature of the spiral considered as a curve. The geodesic
curvature of the ruling is zero. (It is a curious fact that the lines of curvature cut the
asymptotes at a constant angle of 7r/4.)

In general, ruled surfaces are poorly described by their lines of curvature. Examples
such as the helicoid and the surface z = kzy suggest that the asymptotes may be a better

basis for description. The asymptotic direction can be found from Euler's theorem if the
principal curvatures have opposite signs, that is, the Gaussian curvature is negative. Note
that a given ruled surface may be generated by more than one set of rulings. Also, it is

%"%
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where 12(s) j j 2 + 4. Notice that 0 is the curvature of the cross section curve.

We axe now ready to prove the Theorem. Suppose, without loss of generality, that the
straight axis of the cone is k. Let the cross-section be f(s)i + g(s)j, as above. Suppose
the expansion function is h(z), and assume that the eccentricity of the cone is zero, that
is, the axis is normal to the cross-section. The generalized cone is

r(s, z) - h(z)f(s)i + h(z)g(a)j + zk.

To save on notation, we suppress parameters. We find

a r_
aa- [hi, h4, O]Tas

fi ~ ~ar • 1 T

- = [hf, hg,1] T

(where [...]T denotes the vector that is the transpose of the given row vector) and so the
first fundamental form of the surface is (using the notation introduced above)

(h 212  hhdd

hhdd I +Ad)

The surface unit normal n is parallel to h = [h, -hf,hh(fg - fg) 1T. The second -

fundamental form of the surface is

02)

0 'jhh(f4 - Ig)

The principal directions of curvature axe the eigenvectors of the matrix G- 1D, and
this matrix is diagonal if and only if

dh dd

dz do

from which the result follows.

2.5. Asymptotes

We begin with an example that illustrates that lines of curvature are not always the best
basis for describing a surface. Consider a helicoid of a single blade (Figure 11), which
can be parameterized as follows

r(l, 0) = [l Cos 0, sin 9, mO]T ,
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Theorem 2 If the axis of a generalized cone is straight, and the axis is normal to the
•* .-.-..- cross-section, then (i) a cross-section is a line of curvature if and only if it is a skeleton;

(ii) a tracing is a line of curvature if and only if it is a fluting.
Proof. To fix notation, we begin by analyzing a planar cross section (Figure 10). The
curve is (f(s), g(s)), where s denotes arclength, and so its radial distance from the origin
is given by

d2 (8) = f 2 + g2 . (14)

(Ms),g (s)) 0 . i

Figure 10. A planar cross-section curve

Differentiating Eq. 14 with respect to arc length gives

_//+ d (15)

Thus the radial distance attains an extremum where the numerator of Eq. 15 is zero.
Now consider the orientation 0 of the tangent to the curve.

tan= g,

sec2 o= -

j2 '(16)

cos 2 0 2+ 2

S- + if

12 ,

*. *. *. ..., ~ -
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Proof of Theorem. We assume that the surface has the form of the Lemma. Since the
Gaussian is separable, the convolution of the surface is

G (r) f (x) -- (y) * (G,(z) f f(x)).

By the derivative theorem for convolutions, it follows that

{G,(r) * f -- G, (y) * {Go(z) f(z)} N .

Convolution with a constant is simply multiplication by a constant, and so the prin-
cipal curvatures of G,(r) * f z) are the same as the principal curvatures of G.(z) f f(z),
which are given by the Lemma.

The Lemma can be extended straightforwardly to show that the Gaussiah convolution
of a surface of the form z = f(x)(A + By) is a similar surface z= (G* f ())(A + By)
but the lines of curvature are not preserved.

2.4. Lines of Curvature

Brady and Yuille [1984b] argue that, in many cases, the lines of curvature give a natural
parameterization of a surface. One practical advantage is that a computer-aided design
(CAD) patch representation based on lines of curvature avoids problems of local flattening
oi the surface. Stevens [1982, 1983] has studied drawings consisting of a repeated pattern
of "parallel" planar curves and the curved surfaces they suggest. He proposes that the
given curves are often interpreted as lines of curvature of the perceived surface.

In Section 2.1 we noted that a line of curvature has to satisfy additional constraint if
it is to be made explicit. For example, only the planar lines of curvature of the ellipsoid
shown in Figure 2 are useful for describing the surface.

Consider a surface of revolution. Suppose that the axis is aligned with the z- axis.
The surface is formed by rotating the (one-parameter) curve p(u)i + z(u)k about k. The
surface is

r(u, 0) = p(u) cos 0i + p(u) sin 9j + z(u)k.

The principal curvatures (see for example Millman and Parker [1977, p861) are the meridi-
ans and the parallels, all of which are planar. In addition, the parallels are circular, so the
curvature along any one of them is constant. The curvature along a parallel is nTr*/p(u),
where r* = [cos 0 sin0 01 T. The foreshortening of the expected curvature p(u) exempli-
fies Meusnier's theorem [Weatherburn 1927]. On the other hand, the asymptotes on a
surface of revolution are, in general, complex space curves and the geodesic curvature is
a complex function of position along the asymptote.

Surfaces of revolution are essentially one-dimensional in that their shape is completely
determined by a planar curve. It is reasonable to ask whether lines of curvature are more
generally useful. The theorem stated in Section 2.1 shows that they are. We first prove
the theorem for the straight axis case originally studied by Marr [1977], relegating the
more general case to Appendix B.
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based on an analysis of the surfaces meeting at a corner. For example, if the smooth
contour curves are all extremal then the Gaussian curvature would be positive along the
curve with positive curvature and negative along the curves with negative curvature. This
would imply that the surface changes the sign of its Gaussian curvature. But there are
no surface markings or other evidence that it does. A more parsimonious assumption is
that the surface has the same (positive) Gaussian curvature everywhere, and hence that
the contour curves with negative curvature are discontinuities. This is, in fact, what is
perceived.

Figure 9. A line drawing that is perceived as the curved surface of a sail.

We can derive further results about the relationships between surface curves' and the
surface. For example, the sign of the normal curvature along the boundary rim can be
determined from its projection [Yuille and Brady 1984]

2.3. Surface Intersections

In this Section, we prove the following Theorem, which suggests that we can find surface
intersections at a given scale of Gaussian smoothing by inspecting the lines of curvature.
We noted earlier that it undoes Joachimstal's Theorem.
Theorem The Gaussian convolution of a cylindrical surface is cylindrical. In more
detail, let f(z, y, z) be a surface that is the cross product of a planar curve and a straight
line. The lines of curvature of the convolution of f with a Gaussian are in the plane of
the curve and parallel to the generating line.

We begin with a Lemma, whose proof is simple and is omitted.
Lemma Let r(z, y) = z + yJ + f(z)k be a cross product surface consisting of parallel
instances of a curve f(x) in the z - z plane. The principal curvatures and directions of
r(x, y) are zero in the y direction and the curvature of f in the z - z plane.
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kxT -:
n -- i- (k.- T)2})'2

we find

[k,T,NJ
n N {1 - (k.T)2)2,

={- (k.T)2 -_ (k.-N)2)1

{1- (k.-T)2)2

The Gaussian curvature Xc of the surface at points along extremal boundaries is given
by (Faux and Pratt 1979, page 112]

(I
ICG =D

rsn • N
1 - (T k)2 (12)

{1 - (k. T)2 -(.)2
"- r { -(k .T)2)1

It finally follows from Eq. 6 that

IXGl = k ,rP (13). 1
Since ic, is always positive, the sign of the Gaussian curvature of the surface at points

along the boundary curve is the same as the sign of the curvature of the projection of the
boundary curve. [Koenderinck 1984].

We can prove a slight extension to Koenderinck's result. If tp is zero, then the
Gaussian curvature KG is zero. Also, recall from Eq. 6 that if ecp is zero then (in general)
the curvature r. of the boundary curve is also zero. It follows from Eq. 5 that the normal
curvature x. of the boundary curve is also zero. Denote the principal curvatures at the
surface point by X1 , #C2. The Gaussian curvature xG = KIX2 is zero, and so at least one
of PIv, X2 is zero. But, by Euler's theorem,

K, = II cos' 0 + X2 sin2 0,
and so r 1 = K2 =0 or 0 is zero or 7r/2. That is, points on the projection of an extremal
boundary where the curvature rp is zero typically correspond to surface points that are
locally flat, that is, where both principal curvatures are zero, or the boundary is locally
aligned with a surface line of curvature whose curvature is zero.

We have assumed that it is possible to determine which bounding contours are ex-
tremal and which mark discontinuities. This is a reasonable assumption in the case of
dense surface data such as that used in the experiments reported in the next section. It
is much more difficult in thecase of line drawings such as that shown in Figure 9. Barrow .,

and Tenenbaum [1981] propose that line labelling can suffice to make the distinction. We
suggest that the results derived in this section hint at a more general approach that is

a,..
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"%G (T T.T T,I".. = (T N, .- a) (8)

(' n 9 n' -n.N '

where r is the curvature of the radial curve. In order for the boundary rim to be visible,
ic . must be positive.

S'.

Figure 8. The rim and radial coordinate frame. The radial curve is the intersection of the surface and
the plane that contains the view vector and the surface normal. The boundary curve defines the other
parameter.

Note that, in general, T - T, 0. Since the tangent T, to the radial curve r, lies in
the plane spanned by both k and n (remembering that we are considering a boundary
curve), and is in the surface tangent plane, we have

T, k, and N, n. (9)
It follows that T, is constant along the boundary curve, so that

(10)

a 2 r

The second fundamental form reduces by Eqs. 9 and 10 to

D 0

Since

LV



10 Describing surfaces

Z N / N /curver=rl)

Surface

-p

.J.

IFigure 7. A curve lying on a surface. The vectors T, N, B are the moving triledron of the curve, whose
curvature is r.. The surface normal is n.

Squaring Eq. 3 yields

K2  K2 ()

It follows that if i= 0 then xn=c g = 0, and if xg = 0, then by Eq. 4, in general, = 0,
and r, = 0. It is easy to show (see Appendix A) that

2 _ 1 - (T. k)2 _(N.k) 2 } 2
1P .{1-(T. k) 2}3  X (6)

where rp is the curvature of the projected curve rp(ep). It follows that, in general,

ip.= 0 if and only if = 0. (7)

We can now present a new proof of a recent result due to Koenderinck [1984] that
relates the curvature Icp of the projection of the boundary curve to the Gaussian curvature
KG of the surface. The key is to choose an appropriate parameterization of the surface
at a point on the boundary curve (Figure 8). Define the radial curve at a point on the
boundary to be the (normal) intersection of the surface with the plane that contains the
surface normal n and the view vector k. Let the radial curve be paraneterized by u, and

- denote points along the radial curve by rr(u). Using a and u to parameterize the surface
in the neighborhood of a point on the boundary, we find the first and second fundamental
forms of the surface:

-4
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q Figure 17. A swirling pattern of principal directions shows that lines of urvatutre cannot be extracted by

:. , simply choosing the eight-connected neighbor with the nearest direction after projection onto z = 0. The

" - direction closest to the point marked A is at the point marked B, but C is more consistent with global

..-

judgments.

oil bottle. The program gives similarly good results on all our test objects. Note that
because of discretization it is possible for all the neighbors of a point to become inhibited "

NMU

Figure 17 A. slin gtern o p ons shows that lines of curvature caund ber extrated y

oibttle pr o

by. the program..
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3.3. Using lines of curvature

Earlier, we showed that lines of curvature that are planar, or- alougwbi&*e principai
curvature is constant, are important for describing surfaces. GC,en a linked list of surfaces

-- points forming a line of curvature, we can determine the best fitting plane. If the set
' is {(xi, yi, a) < i < n}, then the least-squares fitting plane az + by + cz + d = 0 is
-- determined from a solution of

var (x) cov (x,y) coy (x,z) (a
coy (x, y) var (y)- coy (y, z) (Ib)1 =0,

coy (x,z) coy (y,z) var (z) C

where var (z) is the variance of the zi's, and coy (z, y) the covariance of the zi and
y,. We can determine whether a given population of voints is planar by examining the
condition number of the covariance matrix (compare Brady and Asada [1984, pages 341
- 342]). Similarly, we can compute the best fitting circle to a line of curvature and
determine whether the population lies on that circle. Figure 19a shows the best fitting
circles computed for the lines of curvature that are the parallels of a cup. Figure 19b
shows the axis that is the locus of the centers of the circles in Figure 19a.

~.N.

Figure 19. a. The best fitting circles to the parallels of the cup. b. the axis that is the locus of the centers
hi- of the best fitting circles shown in a.

° We need to determine the significant discontinuities in a surface. The result would be .

a Surface Primal Sketch analogous to Marr's [1976] intensity change Primal Sketch (for

image surfaces) and Asada and Brady's [1984] Curvature Primal Sketch for significant
curvature changes along planar contours. In each case, the problem is to detect all
significant changes, localize those changes as accurately as possible, and to sy1mbolically r
describe the change. Yuille and Poggio [1983a, 1983b] have proved that, in principle,
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scale space filtering enables a discontinuity to be accurately localized. Canny (1983] uses
the smallest scale at which a given intensity change can be detected to most accurately .:
localize it. Figure 20 shows the surface intersections of a telephone handset found by a
program described below after the surface has first been smoothed at a variety of scales.
The increasing localization of the surface intersection flanking the elongated portion
of the surface can be clearly seen. Canny's [1983] claim that signal to noise increases

proportional to the scale of the filter can also be seen. We are currently working to
integrate these separate descriptions to yield a single description.

20

U- mm 80
400

Figure 20. Significant surface discontinuities found by the curvature primal sketch program at multiple
scales. The inptut to the program is the lines of curvature computed at each scale. The scales shown are

20, 40, 60, and 80

Earlier, we noted a theorem by Joachimsthal that shows that surfaces rarely intersect
along their lines of curvature. We also showed that Gaussian smoothing overcomes this
problem. So long as the curvature of the curve of intersection is small compared to the
Gaussian filter, the lines of curvature of the smoothed surface lie parallel and perpen-
dicular to the locus of curvature maxima of the smoothed surface. Asada and Brady
[1983] filter a planar contour at multiple scales to detect, localize, and describe the sig-
nificant changes in curvature. As an initial experiment, we have applied the curvature
primal sketch program to lines of curvature after they have been projected into their
best fitting plane. The results encourage us to extend the Asada and Brady program to
two-dimensions. Figures 20 and 21 show some of the surface intersections found by this
method.
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7A- I

,.4

Figure 21. Surface intersections found by the curvature primal sketch program applied to lines of curvature
after they have been projected into their best fitting plane.
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5. Appendix A

We derive Equation 6.

dTP 2

o .°"',%.ds 2 d k×(Txk) )2

dsp d8a(I - (T -k)2}13

(-)2{1 -('T. k)2 -(N. k) 2} 2  S

and the result follows from Eq. 2.

%2z
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6. Appendix B: The Generalized Cone Theorera

We prove a more general form of the Theorem proJ , i, . V We relax the
condition of the Theorem to planar axes. As before, we ., mm that -'e eccentricity of
the generalized cone is zero, so that the tangent to the axis curve is normal to the cross
section. Without this assumption, the proof becomes quite complex.

Theorem If the axis of a generalized cone is planar, and the eccentricity of the cone
is zero, then (i) a cross section is a line of curvature if either the generalized cone is a
surface of revolution or the cross section is an extremum; and (ii) a tracing is a line of
curvature if the generalized cone is a tube surface (the expansion function is a constant),
or the tracing is a fluting.
Proof. Denote the Frenet-Serret moving trihedron of the axis curve by (T, N, B). Since
the axis is planar it has zero torsion, which simplifies the Frenet-Serret formulae:

dT dN-=,cN, and - #- T (B2.1)
dt dt

Note that the binormal B is constant, being the unit normal to the plane of the axis.
*- Since the eccentricity of the cone is assumed to be zero, the tangent T to the axis is

normal to the cross-section, which has N and B as a basis. Let the axis of the cone
be a(t), where t is arclength, and let the expansion function be h(t). As in Section 2.3,
suppose that the cross-section is given by f(s)N + g(s)B. The generalized cone is defined
to be

r(8, t) = a(t) + h(t){f s)N + g(s)B}. (B2.2)

The analysis proceeds as in Section 2.3. The first fundamental form is

G h2 12  hhddG = hhdd h2d2 + (1 - ihf)2 .

As expected, this reduces to the expression in Section 2.3 in the case r. 0. The
second fundamental form hints at the complexity of the mosc general case, when the axis
is not restricted to lie in a plane:

where

d11 = h2(ij - i)1-

d12 - hh2 h(ig - )

d22 = hh(ig - f4)(1 - rhf) (B2.3)

- (I - rhf)2 hrj

- fhh(fg - f )(kih + 2tch)

We establish the result as before.
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